4.8 Article

Photoelectrochemical Processes in Polymer-Tethered CdSe Nanocrystals

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 8, Pages 2622-2632

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja907782f

Keywords

-

Funding

  1. U.S. Department of Energy [DE-FG03-02ER15753]
  2. National Science Foundation [CHE 0517963, DMR-0120967]
  3. Arizona Board of Regents TRIF Program-Arizona Research Institute for Solar Energy (AzRISE)

Ask authors/readers for more resources

We demonstrate the electrochemical capture of CdSe semiconductor nanocrystals (NCs), with thiophene-terminated carboxylic acid capping ligands, at the surfaces of electrodeposited poly(thiophene) films (i) poly((diethyl)propylenedixoythiophene), P(Et)(2)ProDOT; (ii) poly(propylenedioxythiophene), PProDOT; and (iii) poly(ethylenedioxythiophene), PEDOT, coupled with the exploration of their photoelectrochemical properties. Host polymer films were created using a kinetically controlled electrodeposition protocol on activated indium-tin oxide electrodes (ITO), producing conformal films that facilitate high rates of electron transfer. ProDOT-terminated, ligand-capped CdSe-NCs were captured at the outer surface of the host polymer films using a unique pulse-potential step electrodeposition protocol, providing for nearly close-packed monolayers of the NCs at the host polymer/solution interface. These polymer-confined CdSe NCs were used as sensitizers in the photoelectrochemical reduction of methyl viologen (MV+2). High internal quantum efficiencies (IQEs) are estimated for photoelectrochemical sensitized MV+2 reduction using CdSe NCs ranging from 3.1 to 7.0 nm diameters. Cathodic photocurrent at high MV+2 concentrations are limited by the rate of hole-capture by the host polymer from photoexcited NCs. The rate of this hole-capture process is determined by (a) the onset potential for reductive dedoping of the host polymer film; (b) the concentration ratio of neutral to oxidized forms of the host polymer ([P(n)]/[P(ox)]); and (c) the NC diameter, which controls its valence band energy, E-VB. These relationships are consistent with control of photoinduced electron transfer by Marcus-like excess free energy relationships. Our electrochemical assembly methods provide an enabling route to the capture of functional NCs in conducting polymer hosts in both photoelectrochemical and photovoltaic energy conversion systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available