4.8 Article

Polymer-Induced Self-Assembly of Small Organic Molecules into Ultralong Microbelts with Electronic Conductivity

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 11, Pages 3700-3707

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja906667x

Keywords

-

Funding

  1. Max Planck Society
  2. Alexander von Humboldt Foundation

Ask authors/readers for more resources

The principle of polymer-controlled crystallization of inorganic materials has been successfully transferred to functional aromatic organic dyes, in this instance 3,4,9,10-perylenetetracarboxylic acid potassium salt (PTCAPS), after its single-crystal structure was determined. The cationic double hydrophilic block copolymer poly(ethylene glycol)-block-branched-poly(ethyleneimine) (PEG-b-PEI) was used as the polymer additive to modify the crystallization of PTCAPS. Ultralong hierarchically structured PTCAPS microbelts with constant width and thickness of each individual belt have been fabricated. The belts are a mesocrystalline assembly of primary nanoparticles with high-energy anionic {001} faces stabilized by polymer complexation. Polarization microscopy, X-ray diffraction, optical absorption spectra, and fluorescence spectra indicate the favorable orientation of the 1 D microbelts in the close-stacking direction and reveal a specific 1D superstructure fluorescence. Electrical conductivity measurements performed on a single nanobelt disclose in the doped state a remarkably high electronic conductivity and further demonstrate extended, wirelike pi-pi interactions along the [020] long axis of the belts. Together with the very large length of the belts and their organic-organic hybrid nanostructure, this makes these organic wires potentially interesting for the field of nano-/micro-optoelectronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available