4.8 Article

Hierarchical Supramolecular Ordering with Biaxial Orientation of a Combined Main-Chain/Side-Chain Liquid-Crystalline Polymer Obtained from Radical Polymerization of 2-Vinylterephthalate

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 23, Pages 8071-8080

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja101184u

Keywords

-

Funding

  1. National Natural Science Foundation of China (NNSFC) [20874082, 20774006, 20990232]
  2. Chinese Ministry of Education for Science and Technology [207075]
  3. Hunan Provincial Education Department [06A068]

Ask authors/readers for more resources

The liquid-crystalline (LC) phase structures and transitions of a combined main-chain/side-chain LC polymer (MCSCLCP) 1 obtained from radical polymerization of a 2-vinylterephthalate, poly(2,5-bis{[6-(4-butoxy-4'-oxybiphenyl) hexyl]oxycarbonyl}styrene), were studied using differential scanning calorimetry, one- and two-dimensional wide-angle X-ray diffraction (1D and 2D WAXD), and polarized light microscopy. We have found that 1 with sufficiently high molecular weight can self-assemble into a hierarchical structure with double orderings on the nanometer and subnanometer scales at low temperatures. The main chains of 1, which are rodlike as a result of the jacketing effect generated by the central rigid portion of the side chains laterally attached to every second carbon atom along the polyethylene backbone, form a 2D centered rectangular scaffold. The biphenyl-containing side chains fill the space between the main chains, forming a smectic E (SmE)-like structure with the side-chain axis perpendicular to that of the main chain. This biaxial orientation of 1 was confirmed by our 2D WAXD experiments through three orthogonal directions. The main-chain scaffold remains when the SmE-like packing is melted at elevated temperatures. Further heating leads to a normal smectic A (SmA) structure followed by the isotropic state. We found that when an external electric field was applied, the main-chain scaffold greatly inhibited the motion of the biphenyls. While the main chains gain a sufficiently high mobility in the SmA phase, macroscopic orientation of 1 can be achieved using a rather weak electric field, implying that the main and side chains with orthogonal directions can move cooperatively. Our work demonstrates that when two separate components, one offering the jacketing effect to the normally flexible backbone and the other with mesogens that form surrounding LC phases, are introduced simultaneously into the side chains, the polymer obtained can be described as an MCSCLCP with a fascinating hierarchically ordered structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available