4.8 Article

Precision Polyethylene: Changes in Morphology as a Function of Alkyl Branch Size

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 131, Issue 47, Pages 17376-17386

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja907521p

Keywords

-

Funding

  1. National Science Foundation [DMR-0703261]
  2. International Max Planck Research School for Polymer Materials

Ask authors/readers for more resources

Metathesis polycondensation chemistry has been employed to control the crystalline morphology of a series of 11 precision-branched polyethylene structures, the branch being placed on each 21st carbon and ranging in size from a methyl group to an adamantyl group. The crystalline unit cell is shifted from orthorhombic to triclinic, depending upon the nature of the precision branch. Further, the branch can be positioned either in the crystalline phase or in the amorphous phase of polyethylene, a morphology change dictated by the size of the precision branch. This level of morphology control is accomplished using step polymerization chemistry to produce polyethylene rather than conventional chain polymerization techniques. Doing so requires the synthesis of a series of unique symmetrical diene monomers incorporating the branch in question, followed by ADMET polymerization and hydrogenation to yield the precision-branched polyethylene under study. Exhaustive structure characterization of all reaction intermediates as well as the precision polymers themselves is presented. A clear change in morphology was observed for such polymers, where small branches (methyl and ethyl) are included in the unit cell, while branches equal to or greater in mass than propyl are excluded from the crystal. When the branch is excluded from the unit cell, all such polyethylene polymers possess essentially the same melting temperature, regardless of the size of the branch, even for the adamantyl branch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available