4.8 Article

Recyclable Nanobiocatalyst for Enantioselective Sulfoxidation: Facile Fabrication and High Performance of Chloroperoxidase-Coated Magnetic Nanoparticles with Iron Oxide Core and Polymer Shell

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 131, Issue 36, Pages 12892-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja905477j

Keywords

-

Funding

  1. Singapore-MIT Alliance

Ask authors/readers for more resources

Magnetic nanoparticles (MNPs) with a core diameter of 30 nm comprising several iron oxide crystals, a poly(glycidyl methacrylate) (PGMA) shell with a thickness of 30 nm, and a surface coated with chloroperoxidase (CPO) were facilely fabricated as a nanobiocatalyst for asymmetric sulfoxidation. The covalently bound CPO did not change the original conformation of the active site and showed the same catalytic activity and enantioselectivity as free CPO for the sulfoxidation of thioanisole to produce (R)-methyl phenyl sulfoxide in >99% ee. The thick PGMA shell significantly increased the stability of the nanobiocatalyst: no toss of the sulfoxidation activity was observed after 11 times of recycling and reuse of the catalyst. Thus, the nanobiocatalyst fabricated here showed the best performance among nanosized biocatalyst particles regarding both the retaining of free enzyme activity and the recycling of catalyst. This is also the first example of a nanobiocatalyst for asymmetric oxidation, and the concept could be generally applicable for fabricating active and recyclable nanobiocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available