4.8 Article

Selective Radical Addition with a Designed Heterobifunctional Halide: A Primary Study toward Sequence-Controlled Polymerization upon Template Effect

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 131, Issue 31, Pages 10808-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja9031314

Keywords

-

Funding

  1. Ministry of Education, Science, Sports and Culture [18GS0209]
  2. Korea Evaluation Institute of Industrial Technology (KEIT) [K0001346] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. Grants-in-Aid for Scientific Research [18GS0209] Funding Source: KAKEN

Ask authors/readers for more resources

A ruthenium(II)-catalyzed, highly selective, quantitative radical addition of an alkene, methacrylic acid (MAA), has been achieved by using a template halide (2) containing a built-in amine group as a recognition site for the carboxyl group of the substrate. The specific ionic binding of MAA by the amine template (1:1 molar ratio) led to preferential formation of the 1:1 MAA-2 adduct, whereas a similar halide without a template induced MAA oligomerization even in the presence of an externally added amine. A competitive radical addition of MAA versus its ester form [methyl methacrylate (MMA)] on the halide further demonstrated that the substrate selectivity [k'(MAA)/k'(MMA)] for 2 is enhanced more than 10 times by the intramolecular introduction of the template relative to the result for the nontemplate halide. These specificities are most likely triggered by the specific interaction (recognition) of the carboxyl group in MAA via the acid-selective template amine, which is implanted in the close vicinity of the radical addition site in 2. These results intimate possibility of control over the repeat-unit sequence in precision polymerization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available