4.8 Article

Ternary Protein Complex of Ferredoxin, Ferredoxin:Thioredoxin Reductase, and Thioredoxin Studied by Paramagnetic NMR Spectroscopy

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 131, Issue 48, Pages 17576-17582

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja904205k

Keywords

-

Funding

  1. U.S. Department of Energy [DE-FG03-99ER20346]
  2. Robert A. Welch Foundation [D-0710]
  3. Netherlands Organisation for Scientific Research [700.52.425]
  4. Volkswagenstiftung [I/80854]
  5. Schweizerischer Nationalfonds

Ask authors/readers for more resources

In oxygenic photosynthetic cells, carbon metabolism is regulated by a light-dependent redox signaling pathway through which the light signal is transmitted in the form of electrons via a redox chain comprising ferredoxin (Fd), ferredoxin:thioredoxin reductase (FTR), and thioredoxin (Trx). Trx affects the activity of a variety of enzymes via dithiol oxidation and reduction reactions. FTR reduces an intramolecular disulfide bridge of Trx, and Trx reduction involves a transient cross-link with FTR. NMR spectroscopy was used to investigate the interaction of Fd, FTR, and an m-type Trx. NMR titration experiments indicate that FTR uses distinct sites to bind Fd and Trx simultaneously to form a noncovalent ternary complex. The orientation of Trx-m relative to FTR was determined from the intermolecular paramagnetic broadening caused by the [4Fe-4S] cluster of FTR. Two models of the noncovalent binary complex of FTR/Trx-m based on the paramagnetic distance restraints were obtained. The models suggest that either a modest or major rotational movement of Trx must take place when the noncovalent binary complex proceeds to the covalent complex. This study demonstrates the complementarity of paramagnetic NMR and X-ray diffraction of crystals in the elucidation of dynamics in a transient protein complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available