4.8 Article

Helical Structure of Disodium 5′-Guanosine Monophosphate Self-Assembly in Neutral Solution

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 131, Issue 9, Pages 3180-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja809258y

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada

Ask authors/readers for more resources

Nucleic acid molecules (DNA and RNA) are formed by linking many different basic units known as nucleotides together via covalent phosphodiester bonds. Nucleic acid molecules often form helical structures known as B-DNA (right-handed), A-DNA/RNA (right-handed), and Z-DNA (left-handed). We have found that spontaneous self-assembly of just one nucleotide, guanosine T-monophosphate (5'-GMP), leads to formation of a right-handed helix in neutral solution. The linkage between individual 5'-GMP molecules along the helix is provided by hydrogen bonds, as opposed to the covalent phosphodiester bonds found in regular polynucleotides. The most surprising finding is that this right-handed 5'-GMP helix has alternating C2'-endo and C3'-endo sugar puckers along the helical strand, a situation only seen to date in left-handed Z-DNA. The self-organized structure of 5'-GMP provides a perfect condition for phosphodiester bond formation which may provide a clue for formation of RNA oligomers under prebiotic conditions. We anticipate that similar helical structures could exist in other nucleic acid systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available