4.8 Article

Role of Self-Organization, Nanostructuring, and Lattice Strain on Phonon Transport in NaPb18-xSnxBiTe20 Thermoelectric Materials

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 131, Issue 49, Pages 17828-17835

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja905448b

Keywords

-

Funding

  1. Office of Naval Research [N00014-08-1-0613]
  2. NSF-NSEC
  3. NSF-MRSEC
  4. Keck Foundation
  5. State of Illinois
  6. Northwestern University
  7. DOE Office of Science [DEAC02-98CH10886]

Ask authors/readers for more resources

The composition and microstructure of five thermoelectric materials, PbTe, SnTe, Pb0.65Sn0.35Te and NaPb18-xSnxBiTe20 (x = 5, 9), were investigated by advanced transmission electron microcopy. We confirm that the pure PbTe, SnTe, and Pb0.65Sn0.35Te have a uniform crystalline structure and homogeneous compositions without any nanoscale inclusions. On the other hand, the nominal NaPb9Sn9BiTe20 phase contains extensive inhomogeneities and nanostructures with size distribution of 3-7 nm. We find that the chemical architecture of the NaPb13Sn5BiTe20 member of the series to be more complex; besides nanoscale precipitates, self-organized lamellar structures are present which were identified as PbTe and SnTe by composition analysis and transmission electron microscopy image simulations. Density functional theory calculations suggest that the arrangement of the lamellar structures conforms to the lowest total energy configuration. Geometric-phase analyses revealed large distributed elastic strain around the nanoscale inclusions and lamellar structures. We propose that interface-induced elastic perturbations in the matrix play a decisive role in affecting the phonon-propagation pathways. The interfaces further enhance phonon scattering which, in turn, reduces the lattice thermal conductivity in these systems that directly results directly in improvement in the thermoelectric figure of merit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available