4.8 Article

NMR Second Site Screening for Structure Determination of Ligands Bound in the Hydrophobic Pocket of HIV-1 gp41

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 131, Issue 8, Pages 2821-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja8094558

Keywords

-

Funding

  1. NIH [NS059403, P41 RR-01081]

Ask authors/readers for more resources

The development of nonpeptide fusion inhibitors through rational drug design has been hampered by the limited accessibility of the gp41 coiled coil target, which is highly hydrophobic, and the absence of structural data defining details of small molecule interactions. Here we describe a new approach for obtaining structural information on small molecules bound in the hydrophobic pocket of gp41, using a paramagnetic probe peptide which binds adjacent to the pocket along an extended coiled coil. Ligand binding in the pocket leads to paramagnetic relaxation effects or pseudocontact shifts of ligand protons. These effects are distance and/or orientation dependent, permitting determination of ligand pose in the pocket. The method is demonstrated with a fast-exchanging ligand. Multiple measurements at different coiled coil and probe peptide ratios enabled accurate determination of the NMR parameters. Use of a labeled probe peptide stabilizes an otherwise aggregation-prone coiled coil and also enables modulation of the paramagnetic effect to study ligands of various affinities. Ultimately, this technique can provide essential information for structure-based design of nonpeptide fusion inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available