4.8 Article

Minimizing the hydrodynamic size of quantum dots with multifunctional multidentate polymer ligands

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 130, Issue 34, Pages 11278-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja804306c

Keywords

-

Funding

  1. National Institutes of Health [P20 GM072069, R01 CA108468, U01HL080711, U54CA119338]

Ask authors/readers for more resources

We report a new strategy to minimize the hydrodynamic size of quantum dots (QDs) and to overcome their colloidal stability and photobleaching problems based on the use of multifunctional and multidentate polymer ligands. A novel finding is that a balanced composition of thiol (-SH) and amine (-NH2) coordinating groups grafted to a linear polymer chain leads to highly compact nanocrystals with exceptional colloidal stability. a strong resistance to photobleaching, and high fluorescence quantum yields. In contrast to the standing brushlike conformation of PEGylated dihydrolipoic acid molecules, mutlidentate polymer ligands can wrap around the QDs in a closed loops-and-trains conformation. This structure is highly stable thermodynamically and is responsible for the excellent colloidal and optical properties, We have optimized this process for the preparation of ultrastable CdTe nanocrystals and have found the strategy to be broadly applicable to a wide range of nanocrystalline materials and heterostructures. This work has led to a new generation of bright and stable QDs with small hydrodynamic diameters between 5.6 and 9.7 nm with tunable fluorescence emission from the visible (515 nm) to the near-infrared (720 nm). These QDs are well suited for molecular and cellular imaging applications in which the nanoparticle hydrodynamic size must be minimized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available