4.8 Article

The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 130, Issue 48, Pages 16324-16329

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja806493n

Keywords

-

Funding

  1. Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC0205CH 1123 1]

Ask authors/readers for more resources

A comparison of three samples of poly(3-hexylthiophene) having regioregularities of 86, 90, and 96% is used to elucidate the effect of regioregularity on polymer-fullerene-composite solar cell performance. It is observed that polymer samples with lower regioregularity are capable of generating fullerene composites that exhibit superior thermal stability. The enhanced thermal stability of the composites is attributed to a lower driving force for polymer crystallization in the less regioregular polymer samples, which is supported with two-dimensional grazing incidence X-ray scattering and differential scanning calorimetry measurements. Furthermore, it is demonstrated that all three polymer samples are capable of generating solar cells with equivalent peak efficiencies of similar to 4% in blends with [6,6]-phenyl-C-61-butyric acid methyl ester. While it may be non-intuitive that polymers with lower regioregularity can exhibit higher efficiencies, it is observed that the charge-carrier mobility of the three polymers is on the same order of magnitude (10(-4) cm(2) V-1 s(-1)) when measured from the space-charge-limited current, suggesting that highly regioregular and crystalline polythiophenes are not required in order to effectively transport charges in polymer solar cells. Overall, these results suggest a design principle for semicrystalline conjugated polymers in fullerene-composite solar cells in which crystallization-driven phase separation can be dramatically suppressed via the introduction of a controlled amount of disorder into the polymer backbone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available