4.8 Article

Onset of 310-helical secondary structure in aib oligopeptides probed by coherent 2D IR spectroscopy

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 130, Issue 20, Pages 6556-6566

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja8007165

Keywords

-

Ask authors/readers for more resources

We have investigated the onset of the secondary structure and the evolution of two-dimensional infrared (2D IR) spectral patterns as a function of chain length with a study of 3(10)-helical peptides. The results show that 2D IR is highly sensitive to peptide conformation, disorder, and size. An extensive set of 2D IR spectra of C-alpha-methylated homopeptides, Z-(Aib)(n)-OtBu (n = 3, 5, 8, and 10), in CDC13 was measured in the amide-I region. The 2D spectral patterns of the tripeptide are quite different from those of the longer peptides. The spectral signatures begin to converge at the pentapeptide and become almost the same for the octa- and decapeptide. Simulations employing a vibrational exciton model were performed, with the local mode frequency shifts estimated from the intramolecular hydrogen bond electrostatic energies. The 2D spectra are well simulated using dihedral angle distributions around the average values (phi, psi) approximate to (-57 degrees, -31 degrees) with a width of similar to 21 degrees. The simulated site-dependent amide-I local mode frequencies are in agreement with those from scaled semiempirical AM1 calculations. The tripeptide exhibits a more noticeable discrepancy between the experimental and simulated cross-peak patterns. This behavior suggests the presence of a peptide population outside the single beta-turn conformation. The onset of the 3(10)-helical secondary structure appears to already occur at the pentapeptide level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available