4.8 Article

Detection of mismatched DNA on partially negatively charged diamond surfaces by optical and potentiometric methods

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 130, Issue 40, Pages 13251-13263

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja710167z

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, [A07102000]
  2. Consolidated Research Institute for Advanced Science and Medical Care, Waseda University (ASMew)

Ask authors/readers for more resources

The effects of surface charge density on DNA hybridization have been investigated on a mixture of hydrogen-, oxygen-, and amine-terminated diamond surfaces. A difference in the hybridization efficiencies of complementary and mismatched DNA was clearly observed by fluorescence and potentiometric observations at a particular coverage of oxygen. In the fluorescence observation, singly mismatched DNA was detected with high contrast after appropriate hybridization on the surface with 10-20% oxygen coverage. The amount of oxygen in the form of C-O- (deprotonated C-OH) producing the surface negative-charge density was estimated by X-ray photoelectron spectroscopy. Electrolyte solution gate field-effect transistors (SGFETs) were used for potentiometric observations. The signal difference (change in gate potential) on the SGFET, which was as large as similar to 20 mV, was caused by the difference in the hybridization efficiencies of complementary target DNA (cDNA) and singly mismatched (1 MM) target DNA with a common probe DNA immobilized on the same SGFET. The reversible change in gate potential caused by the hybridization and denaturation cycles and discriminating between the complementary and 1 MM DNA targets was very stable throughout the cyclical detections. Moreover, the ratio of signals caused by hybridization of the cDNA and 1 MM DNA targets with the probe DNA immobilized on the SGFET was determined to be 3:1 when hybridization had occurred (after 15 min on SGFET), as determined by real-time measurements. From the viewpoint of hybridization kinetics, the rate constant for hybridization of singly mismatched DNA was a factor of similar to 3 smaller than that of cDNA on this functionalized (oxidized and arninated) diamond surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available