4.8 Article

Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 130, Issue 37, Pages 12456-12464

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja8030278

Keywords

-

Funding

  1. EPSRC [EP/C523857/1]
  2. BBSRC [BB/C503662/1]
  3. Biotechnology and Biological Sciences Research Council [BB/C503662/1] Funding Source: researchfish
  4. Engineering and Physical Sciences Research Council [EP/C523857/1] Funding Source: researchfish

Ask authors/readers for more resources

Immobilization of proteins onto solid supports is important in the preparation of functional protein microarrays and in the development of bead-based bioassays, biosensors, and industrial biocatalysts. In order to generate the stable, functional, and homogeneous materials required for these applications, attention has focused on methods that enable the efficient and site-specific covalent immobilization of recombinant proteins onto a wide range of platforms. To this end, the phosphopantetheinyl transferase Sfp was employed to catalyze the direct immobilization of recombinant proteins bearing the small, genetically encoded ybbR tag onto surfaces functionalized with CoA. Using mass spectrometry, it was shown that the Sfp catalyzes immobilization of a model acyl carrier protein (ACP) onto CoA-derivatized PEGA resin beads through specific covalent bond formation. Luciferase (Luc) and glutathione-S-transferase (GST) ybbR-fusion proteins were similarly immobilized onto PEGA resin retaining high levels of enzyme activity. This strategy was also successfully applied for the immobilization of the ACP, as well as ybbR-Luc, -GST, and -thioredoxin fusion proteins, on hydrogel microarray slides. Overall, the Sfp-catalyzed surface ligation is mild, quantitative, and rapid, occurring in a single step without prior chemical modification of the target protein. Immobilization of the target proteins directly from a cell lysate mixture was also demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available