4.8 Review

Supramolecular control for the modular synthesis of pseudopeptidic macrocycles through an anion-templated reaction

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 130, Issue 19, Pages 6137-6144

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja710132c

Keywords

-

Ask authors/readers for more resources

The anion-templated synthesis of different pseudopeptidic macrocycles has been studied in detail by using a multidisciplinary approach. The reaction between an open-chain pseudopeptidic,diamine and the appropriate dialdehyde is highly affected by the presence of the best fitting anionic template. The formation of the corresponding macrocyclic tetraimino-template supramolecular complex is demonstrated by NMR (ROESY and PGSE) and mass spectrometry (ESI-TOF). These supramolecular complexes can be easily reduced to the corresponding more stable tetraamine macrocycles. Accordingly, we have used this reaction to efficiently synthesize a family of new pseuclopeptidic macrocycles in a one-pot two-steps anion-templated reductive amination reaction, which comprises a multicomponent macrocyclization through the selective formation of four chemical bonds to yield a unique macrocyclic structure. Different variables like the aliphatic spacer between amino acidic moieties, geometry of the dialdehyde, and structure of the amino acid side chains were thoroughly studied, and their effect in the formation and stability of the supramolecular complexes discussed. The conformational preorganization induced by the template has been monitored by circular dichroism, reflecting the differences observed in the isolated yields, as well as by NMR spectroscopy. This effect has been also supported by molecular modeling. All the experimental and theoretical techniques were strongly consistent and reflected the same trends by comparing the different structural variables introduced in the system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available