4.8 Article

Functional oligomers for the control and fixation of spatial organization in nanoparticle assemblies

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 130, Issue 11, Pages 3516-3520

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja077625i

Keywords

-

Ask authors/readers for more resources

Interactions in nanoparticle assemblies play an important role in modulating their interesting magnetic and optical properties. Controlling and fixing the distance between nanoparticles is therefore crucial to the development of next-generation nanodevices. Here, we show that the interparticle distance in two-dimensional assemblies can be quantitatively controlled by functionalizing the nanoparticles with short polymers containing one functional end group that binds to the nanoparticle. Carboxy-functional poly(dimethylsiloxane) (PDMS) ligands are attached to the nanoparticle surface by a simple ligand exchange process with the oleic acid synthesis ligands. The distance between nanoparticles is manipulated by adjusting either the number of PDMS ligands per molecule or their molecular weight. The use of PDMS ligands is unique in that they provide a means to permanently and robustly fix the spatial distribution of nanoparticles because PDMS is readily converted to silicon oxide by a simple UV/ozone treatment. The distance between nanoparticles can be designed a priori, as it is found to scale well with theoretical predictions for the thickness of the surface-bound polymer brush layer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available