4.8 Article

Zeolite-like metal-organic frameworks as platforms for applications:: On metalloporphyrin-based catalysts

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 130, Issue 38, Pages 12639-+

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja804703w

Keywords

-

Funding

  1. University of South Florida
  2. National Science Foundation [DMR-0548117]
  3. ACS-PRF [4323-AC4]

Ask authors/readers for more resources

The extra-large cavities of zeolite-like metal-organic frameworks (ZMOFs) offer great potential for their exploration in applications pertinent to larger molecules, like porphyrins. The anionic nature of the framework allowed for facile in situ encapsulation of a cationic free-base porphyrin, and the a-cage of our (In-imidazoledicarboxylate)-based rho-ZMOF is ideally suited to the isolation of one porphyrin molecule per cage, which prevents the oxidative self-degradation associated with self-dimerization common in homogeneous catalysis and upon aggregation in solid supports like mesoporous silicates or polymers. The encapsulation of a free-base porphyrin [5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin] and the stability of the rho-ZMOF to metalation conditions, allows for the preparation of a variety of metalloporphyrins (i.e., Mn, Cu, Co, Zn ions) with the ZMOF serving as a platform. The Mn-metallated porphyrin encapsulated in rho-ZMOF shows catalytic activity toward the oxidation of cyclohexane, with turn-over numbers, to the best of our knowledge, higher than reported for similar heterogeneous systems, and our system can be recycled up to 11 cycles, which represents a longer lifetime than reported for any other system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available