4.7 Article

Microstructure-thermal conductivity relationships for plasma-sprayed yttria-stabilized zirconia coatings

Journal

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
Volume 91, Issue 8, Pages 2636-2645

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1551-2916.2008.02476.x

Keywords

-

Ask authors/readers for more resources

The microstructures of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings are complex, contributing to challenges in establishing microstructure-thermal conductivity relationships. Furthermore, the dynamic evolution of microstructure and properties during service offers a significant challenge in defining design strategies and extended coating performance. In this paper, the relationship between microstructure and thermal conductivity is investigated for three sets of plasma-sprayed YSZ coating systems prepared using different morphology powders, different particle size distributions, and controlled modification of particle states through plasma torch parameters. Both ambient and temperature-dependent thermal conductivity were conducted in the as-sprayed and thermally aged states. The results suggest that a range of thermal conductivities can be achieved from the coatings, offering potential for microstructural tailoring for desired performance. The results also demonstrate that different as-deposited microstructures display varying propensity for sintering and these attributes need to be considered in the design and manufacturing cycle. This expansive study of a range of coatings has also allowed synthesis of the results through thermal conductivity-porosity maps and has allowed elucidation of the contributing microstructural components for both the ambient and high-temperature thermal conductivity. Considering that the operating thermal transport mechanisms are different at these two temperature extremes, such mapping strategies are of value to both science and technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available