4.2 Article

A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil

Journal

JOURNAL OF TERRAMECHANICS
Volume 53, Issue -, Pages 93-104

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jterra.2014.04.003

Keywords

Discrete element method; Cohesive soil; Reaction force; Soil-tool interaction

Funding

  1. Fraunhofer Innovation Cluster Digital Engineering for Commercial Vehicles

Ask authors/readers for more resources

Soil can roughly be classified into cohesionless, cohesive, and cemented soil. In this contribution, a discrete element model for the simulation of cohesive soil is presented. It is based on a model for cohesionless material with spherical particles, normal repulsive and frictional contacts, as well as rolling resistance with an elastic limit to compensate the excessive particle rolling. The cohesive behavior is modeled by an additional attractive normal force between particles. The model is not derived from one of the microscopic origins of cohesion, such as liquid bridges or electrostatic forces. Instead, it is set up in analogy to the macroscopic shear failure characteristics of cohesive soil. The model is stress history dependent. By that, the amount of cohesion is limited by the pressure that contacting particles have experienced during the course of the simulation. The discrete element model is shown to be scale invariant in the quasi-static regime, i.e. if all lengths of the model are scaled, the results remain unaffected by the scaling. The model is applied to a small-scale laboratory test and an excavator digging in natural cohesive soil. The contact parameters are calibrated by simulated triaxial compression tests. A comparison between simulation and measurement shows good qualitative and quantitative agreement. (C) 2014 ISTVS. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available