4.2 Article

Time-resolved SAXS measurements facilitated by online HPLC buffer exchange

Journal

JOURNAL OF SYNCHROTRON RADIATION
Volume 17, Issue -, Pages 769-773

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0909049510030372

Keywords

time-resolved small-angle X-ray scattering; TR-SAXS; SAXS; HPLC; HPLC-SAXS; long-acting insulin analogue

Ask authors/readers for more resources

Small-angle X-ray scattering (SAXS) is a powerful technique to structurally characterize biological macromolecules in solution. Heterogeneous solutions are inherently challenging to study. However, since SAXS data from ideal solutions are additive, with careful computational analysis it may be possible to separate contributions from individual species present in solution. Hence, time-resolved SAXS (TR-SAXS) data of processes in development can be analyzed. Many reported TR-SAXS results are initialized by a sudden change in buffer conditions facilitated by rapid mixing combined with either continuous or stopped flow. In this paper a method for obtaining TR-SAXS data from systems where the reaction is triggered by removal of a species is presented. This method is based on fast buffer exchange over a short desalting column facilitated by an online HPLC (high-performance liquid chromatography) connected to the SAXS sample cell. The sample is stopped in the sample cell and the evolving reaction is followed. In this specific system the removal of phenol initiates a self-association process of long-acting insulin analogues. For this experiment, data were collected in time series while varying concentrations. The method can be generally applied to other systems where removal of a species or other changes in experimental conditions trigger a process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available