4.5 Article

A reproducible porcine ePTFE arterial bypass model for neointimal hyperplasia

Journal

JOURNAL OF SURGICAL RESEARCH
Volume 148, Issue 2, Pages 230-237

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2007.08.003

Keywords

restenosis; neointimal hyperplasia; porcine; ePTFE; peripheral arterial disease; bypass

Categories

Ask authors/readers for more resources

Background. Late failure of prosthetic vascular bypass grafting using expanded polytetrafluoroethylene (ePTFE) is secondary to the development of neointimal hyperplasia, most commonly at the distal anastomosis. To develop therapies that can improve upon current prosthetic vascular bypass grafting, a large animal model of prosthetic bypass grafting that results in reproducible neointimal hyperplasia is necessary. Methods. We performed bilateral end-to-side carotid artery bypasses with 6 mm ePTFE in a porcine model (n = 11). We studied graft patency using magnetic resonance angiography (MRA, 3 wk), duplex ultrasonography (4 wk), and digital-subtraction contrast angiography (4 wk). Animals were sacrificed at 4 wk and morphometric analysis was performed. Results. Of the 11 animals that underwent surgery, one pig died from respiratory compromise; of the remaining 10, graft patency was 90% at 4 wk. Peak systolic and end diastolic velocities were established for this model using ultrasonography. MRA, ultrasonography, and angiography confirmed graft patency and were complimentary tools to evaluate the grafts. Development of neointimal hyperplasia was reproducible at 4 wk in both the proximal and distal anastomoses (2.5 to 3 mm(2)) of the ePTFE bypass grafts. Conclusion. We developed a reproducible porcine ePTFE carotid artery bypass model for studying neointimal hyperplasia. Not only does this model allow for the manipulation and evaluation of potential therapies, but patency and neointimal hyperplasia can be easily evaluated by traditional means, such as MRA, ultrasonography, and angiography. This preclinical model is ideal for evaluation of novel therapies in vivo designed to inhibit neointimal hyperplasia following arterial reconstruction with prosthetic bypass grafting. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available