4.7 Article

Triose phosphate use limitation of photosynthesis: short-term and long-term effects

Journal

PLANTA
Volume 243, Issue 3, Pages 687-698

Publisher

SPRINGER
DOI: 10.1007/s00425-015-2436-8

Keywords

Feedback; Phosphoglucoisomerase; Temperature; Triose phosphate transporter; Triose phosphate use; Starch/sucrose partitioning

Categories

Funding

  1. US Department of Energy [DE-SCOOO8509]
  2. USDA

Ask authors/readers for more resources

Main conclusion The triose phosphate use limitation was studied using long-term and short term changes in capacity. The TPU limitation caused increased proton motive force; long-term TPU limitation additionally reduced other photosynthetic components. Photosynthetic responses to CO2 can be interpreted primarily as being limited by the amount or activity of Rubisco or the capacity for ribulose bisphosphate regeneration, but at high rates of photosynthesis a third response is often seen. Photosynthesis becomes insensitive to CO2 or even declines with increasing CO2, and this behavior has been associated with a limitation of export of carbon from the Calvin-Benson cycle. It is often called the triose phosphate use (TPU) limitation. We studied the long-term consequences of this limitation using plants engineered to have reduced capacity for starch or sucrose synthesis. We studied short-term consequences using temperature as a method for changing the balance of carbon fixation capacity and TPU. A long-term and short-term TPU limitation resulted in an increase in proton motive force (PMF) in the thylakoids. Once a TPU limitation was reached, any further increases in CO2 was met with a further increase in the PMF but no increase or little increase in net assimilation of CO2. A long-term TPU limitation resulted in reduced Rubisco and RuBP regeneration capacity. We hypothesize that TPU, Rubisco activity, and RuBP regeneration are regulated so that TPU is normally in slight excess of what is required, and that this results in more effective regulation than if TPU were in large excess.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available