4.7 Article

Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L.

Journal

PLANTA
Volume 242, Issue 4, Pages 869-879

Publisher

SPRINGER
DOI: 10.1007/s00425-015-2323-3

Keywords

DNA methylation; Bisulfite sequencing PCR; Artemisia annua; DBR2 promoter; WRKY

Categories

Funding

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India
  2. University Grant Commission (UGC), New Delhi, India

Ask authors/readers for more resources

UV-B-caused DNA hypomethylation and UV-B-mediated epigenetic activation of additional WRKY-binding site(s) in the DBR2 promoter may contribute to the overexpression of the DBR2 gene in Artemisia annua. DNA methylation is one of the key mechanisms behind stress-induced transcriptional switch off/on. Here, we evaluate the DNA methylation level in response to UV-B radiation in Artemisia annua which produces artemisinin, a sesquiterpene that has been recommended by WHO for the frontline treatment of malaria. However, the drug is facing serious shortage due to its low concentration in plants. UV-B treatment (3 h) enhanced artemisinin concentration up to 1.91-fold as compared to control. A key regulatory gene of artemisinin biosynthesis, DBR2 was upregulated under UV-B. This study presents observations regarding contributions of DNA methylation to the gene regulation using DBR2 as an example. Restriction digestion of genomic DNA by isoschizomers (MspI and HpaII) suggested UV-B involvement in DNA hypomethylation in A. annua. The global level of DNA methylation (R) was 3.4 and 5.9 % for UV-B treated and control plants, respectively, attesting hypomethylation of DNA in response to UV-B. Further bisulfite sequencing PCR showed demethylation at two CHG sites in 18S rRNA gene. Similarly, bisulfite sequencing of promoter region of DBR2 has demonstrated demethylation at 4 CG-, 4 CHH- and 2 CHG-sites. In silico analysis revealed UV-B-mediated demethylation at seven putative transcription factor binding sites including WRKY, which are positive regulators of artemisinin biosynthesis. UV-B treatment has resulted in activation of additional WRKY-binding site in UV-B-treated plants compared with single active WRKY-binding site in control and this could be the probable reason for overexpression of DBR2. It is suggested that DNA demethylation is an important epigenetic response to UV-B radiation in A. annua that surely will provide new horizons to further elucidate the mechanistic evidence of plant's responses to UV-B radiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available