4.5 Article

Reduction of friction on geological faults by weak-phase smearing

Journal

JOURNAL OF STRUCTURAL GEOLOGY
Volume 51, Issue -, Pages 52-60

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsg.2013.03.008

Keywords

Fault friction; Experimental rock deformation; Graphite; Weak-phase smearing

Funding

  1. UK NERC

Ask authors/readers for more resources

Most common crustal rock types display friction coefficients of 0.6 or higher, but some faults must be frictionally weak as they slip when the stress state is unfavourably-oriented (i.e. the resolved shear stress is low for a given normal stress across the fault surface). A role for low-friction minerals and high pore fluid pressures, either separately or in combination, is frequently invoked to explain such slip, but volume fractions of dispersed weak phases often seem to be present in fault gouge in amounts too small to produce significant mechanical weakening. By means of mechanical tests on synthetic fault gouge and microstructural study of run products, we show that the effective area of an embedded weak phase (graphite) on a slip plane can be substantially increased by mechanical smearing, and that the enlarged area of the weak phase on the slip plane follows a linear mixing law. This allows a relatively small volume fraction of the initially dispersed weak phase to have a disproportionately large effect, provided the smearing is concentrated into a narrow planar slip zone or into an interconnected network of them. (c) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available