4.7 Review

Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss

Journal

PLANTA
Volume 242, Issue 2, Pages 397-406

Publisher

SPRINGER
DOI: 10.1007/s00425-015-2312-6

Keywords

Cell shrinkage; Configurational entropy; Desiccation; Desiccation tolerance; Glass formation; Plasmolysis; Temperature; Threshold

Categories

Ask authors/readers for more resources

Main conclusion Discrete categories of seed physiology can be explained through a unified concept of the structural and molecular mobility responses within cells to drying. Tolerance of desiccation is typically described by a threshold or low water content limit to survival. This convention provides fairly good distinction between orthodox and recalcitrant seeds, which show thresholds of less than about 0.07 and greater than about 0.2 g H2O g DW-1, respectively. Threshold water contents, however, are not direct measures of the intensity of water stress tolerated by seeds, nor are they measures of cell response to water stress. More direct criteria, that accommodate both spatial and temporal effects of water loss, are required to explain variation of desiccation tolerance and longevity in seeds from diverse genetic backgrounds and growth conditions. This essay presents the argument that changes in cellular volume directly quantify primary responses to desiccating stress in a context that also links damage, as cellular constituents compress, and protection, as compressed molecules form stabilizing structure. During desiccation, fluid cytoplasm solidifies, and the newly formed spatial relationships among molecules determine whether and how long viability is maintained. The diversity of seed behaviors suggests complexity and opportunity to discover molecules and mechanisms that regulate survival and perception of time in cells that lack metabolic function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available