4.4 Article

Actin-induced perturbation of PS lipid-cholesterol interaction: A possible mechanism of cytoskeleton-based regulation of membrane organization

Journal

JOURNAL OF STRUCTURAL BIOLOGY
Volume 168, Issue 1, Pages 11-20

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2009.04.001

Keywords

Actin; Phosphatidylserine lipids; Fluorescence; Lipid bilayer; Raft domain

Funding

  1. National Science Foundation [MCB-0416779]
  2. IUPUI Nanoscale Imaging Center

Ask authors/readers for more resources

To obtain insight into the potential role of the cytoskeleton on lipid mixing behavior in plasma membranes, the current study explores the influence of physisorbed actin filaments (F-actin) on lipid-lipid phase separations in planar model membrane systems containing raft-mimicking lipid mixtures of well-defined compositions using a complementary experimental approach of epifluorescence microscopy, fluorescence anisotropy, wide-field single molecule fluorescence microscopy, and interfacial rheometry. In particular, we have explored the impact of F-actin on cholesterol (CHOL)-phospholipid interactions, which are considered important for the formation of CHOL-enriched lipid raft domains. By using epifluorescence microscopy, we show that physisorbed filamentous actin (F-actin) alters the domain size of lipid-lipid phase separations in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol (CHOL). In contrast, no actin-induced modification in lipid-lipid phase separations is observed in the absence of POPS or when POPS is replaced by another anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Wide-field single molecule fluorescence microscopy on binary lipid mixtures indicate that PS and PG lipids show similar electrostatic interactions with physisorbed actin filaments. Complementary fluorescence anisotropy experiments on binary PS lipid-containing lipid mixtures are provided to illustrate the actin-induced segregation of anionic lipids. The similarity of electrostatic interactions between actin and both anionic lipids suggests that the observed differences in actin-mediated perturbations of lipid phase separations are caused by distinct PS lipid-CHOL versus PG lipid-CHOL interactions. We hypothesize that the actin cytoskeleton and some peripheral membrane proteins may alter lipid-lipid phase separations in plasma membranes in a similar way by interacting with PS lipids. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available