4.7 Article

MhNCED3, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Malus hupehensis Rehd., enhances plant tolerance to Cl- stress by reducing Cl- accumulation

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 89, Issue -, Pages 85-91

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2015.02.012

Keywords

NCED; Malus hupehensis Rehd.; Ectopic expression; Cl- accumulation; Tolerance

Categories

Funding

  1. National Natural Science Foundation of China [31171923, 31372016]
  2. Specialized Research Fund for the Doctoral Program of Higher Education [20123702130001]

Ask authors/readers for more resources

High Cl- concentrations in tissues can be toxic to crop plants and may lead to reduced growth rates and yields. 9-cis-epoxycarotenoid dioxygenase (NCED) is thought to be involved in the biosynthesis of abscisic acid (ABA), which is an important regulator of plant adaptive responses to stress. Here, the expression of MhNCED3 in Malus hupehensis Rehd. and the effects of MhNCED3 on plant tolerance to Cl- stress were explored. The results showed that MhNCED3 expression and ABA biosynthesis in M. hupehensis Rehd. were induced by Cl- stress. Ectopic expression of MhNCED3 in Arabidopsis complemented the phenotypic defects of the 129B08/nced3 mutant and enhanced WT tolerance to Cl- stress. The transgenic Arabidopsis showed improved growth and developmental status, increased ABA contents, and reduced transpiration rates and relative water content. Furthermore, ectopic expression of MhNCED3 decreased Cl- accumulation and oxidative damage, and up-regulated the expression levels of AtCLCc (chloride channel protein) and AtSLAH3 (slow anion channel 1 homolog 3) genes in Arabidopsis. These observations suggest that MhNCED3 has critical role in enhancing plant tolerance to Cl- stress by reducing Cl- accumulation. (C) 2015 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available