4.4 Article

COMPARISON OF DIFFERENT STRONGMAN EVENTS: TRUNK MUSCLE ACTIVATION AND LUMBAR SPINE MOTION, LOAD, AND STIFFNESS

Journal

JOURNAL OF STRENGTH AND CONDITIONING RESEARCH
Volume 23, Issue 4, Pages 1148-1161

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1519/JSC.0b013e318198f8f7

Keywords

core exercises; lumbar spine; peak activation; strongman events; strength; stability

Categories

Funding

  1. Natural Science and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

McGill, SM, McDermott, A, and Fenwick, CMJ. Comparison of different strongman events: trunk muscle activation and lumbar spine motion, load, and stiffness. J Strength Cond Res 23(4): 1148-1161, 2009-Strongman events are attracting more interest as training exercises because of their unique demands. Further, strongman competitors sustain specific injuries, particularly to the back. Muscle electromyographic data from various torso and hip muscles, together with kinematic measures, were input to an anatomically detailed model of the torso to estimate back load, low-back stiffness, and hip torque. Events included the farmer's walk, super yoke, Atlas stone lift, suitcase carry, keg walk, tire flip, and log lift. The results document the unique demands of these whole-body events and, in particular, the demands on the back and torso. For example, the very large moments required at the hip for abduction when performing a yoke walk exceed the strength capability of the hip. Here, muscles such as quadratus lumborum made up for the strength deficit by generating frontal plane torque to support the torso/pelvis. In this way, the stiffened torso acts as a source of strength to allow joints with insufficient strength to be buttressed, resulting in successful performance. Timing of muscle activation patterns in events such as the Atlas stone lift demonstrated the need to integrate the hip extensors before the back extensors. Even so, because of the awkward shape of the stone, the protective neutral spine posture was impossible to achieve, resulting in substantial loading on the back that is placed in a weakened posture. Unexpectedly, the super yoke carry resulted in the highest loads on the spine. This was attributed to the weight of the yoke coupled with the massive torso muscle cocontraction, which produced torso stiffness to ensure spine stability together with buttressing the abduction strength insufficiency of the hips. Strongman events clearly challenge the strength of the body linkage, together with the stabilizing system, in a different way than traditional approaches. The carrying events challenged different abilities than the lifting events, suggesting that loaded carrying would enhance traditional lifting-based strength programs. This analysis also documented the technique components of successful, joint-sparing, strongman event strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available