4.5 Review

Progesterone inhibition of neuronal calcium signaling underlies aspects of progesterone-mediated neuroprotection

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsbmb.2011.11.002

Keywords

Progesterone; Brain Injury; Neuroprotection; Ischemia; Excitotoxicity; Calcium

Funding

  1. National Institutes of Health [NS41302]

Ask authors/readers for more resources

Progesterone is being utilized as a therapeutic means to ameliorate neuron loss and cognitive dysfunction following traumatic brain injury. Although there have been numerous attempts to determine the means by which progesterone exerts neuroprotective effects, studies describing the underlying molecular mechanisms are lacking. What has become clear, however, is the notion that progesterone can thwart several physiological processes that are detrimental to neuron function and survival, including inflammation, edema, demyelination and excitotoxicity. One clue regarding the means by which progesterone has restorative value comes from the notion that these aforementioned biological processes all share the common theme of eliciting pronounced increases in intracellular calcium. Thus, we propose the hypothesis that progesterone regulation of calcium signaling underlies its ability to mitigate these cellular insults, ultimately leading to neuroprotection. Further, we describe recent findings that indicate neuroprotection is achieved via progesterone block of voltage-gated calcium channels, although additional outcomes may arise from blockade of various other ion channels and neurotransmitter receptors. This article is part of a Special Issue entitled 'Neurosteroids'. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available