4.2 Article

Latin hypercube sampling with multidimensional uniformity

Journal

JOURNAL OF STATISTICAL PLANNING AND INFERENCE
Volume 142, Issue 3, Pages 763-772

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jspi.2011.09.016

Keywords

Monte Carlo simulation; Maximin; Correlated variables; Simulation

Ask authors/readers for more resources

Complex models can only be realized a limited number of times due to large computational requirements. Methods exist for generating input parameters for model realizations including Monte Carlo simulation (MCS) and Latin hypercube sampling (LHS). Recent algorithms such as maximinLHS seek to maximize the minimum distance between model inputs in the multivariate space. A novel extension of Latin hypercube sampling (LHSMDU) for multivariate models is developed here that increases the multidimensional uniformity of the input parameters through sequential realization elimination. Correlations are considered in the LHSMDU sampling matrix using a Cholesky decomposition of the correlation matrix. Computer code implementing the proposed algorithm supplements this article. A simulation study comparing MCS, LHS, maximinLHS and LHSMDU demonstrates that increased multidimensional uniformity can significantly improve realization efficiency and that LHSMDU is effective for large multivariate problems. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available