4.4 Article

Entropy Production in Continuous Phase Space Systems

Journal

JOURNAL OF STATISTICAL PHYSICS
Volume 153, Issue 5, Pages 828-841

Publisher

SPRINGER
DOI: 10.1007/s10955-013-0863-0

Keywords

Entropy; Continuous phase space; Entropy production; Differential entropy; Continuum

Ask authors/readers for more resources

We propose an alternative method to compute the environmental entropy production of a classical underdamped nonequilibrium system, not necessarily in detailed balance, in a continuous phase space. It is based on the idea that the Hamiltonian orbits of the corresponding isolated system can be regarded as microstates and that entropy is generated in the environment whenever the system moves from one microstate to another. This approach has the advantage that it is not necessary to distinguish between even and odd-parity variables. We show that the method leads to a different expression for the differential entropy production along an infinitesimal stochastic path. However, when integrating over all possible paths the local entropy production turns out to be the same as in previous studies. This demonstrates that the differential entropy production in continuous phase space systems is not uniquely defined.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available