4.4 Article

Do Solids Flow?

Journal

JOURNAL OF STATISTICAL PHYSICS
Volume 140, Issue 4, Pages 718-727

Publisher

SPRINGER
DOI: 10.1007/s10955-010-0006-9

Keywords

Solid; Flow; Yield stress

Funding

  1. ANR

Ask authors/readers for more resources

Are solids intrinsically different from liquids? Must a finite stress be applied in order to induce flow? Or, instead, do all solids only look rigid on some finite timescales and eventually flow if an infinitesimal shear stress is applied? Surprisingly, these simple questions are a matter of debate and definite answers are still lacking. Here we show that solidity is only a time-scale dependent notion: equilibrium states of matter that break spontaneously translation invariance, e.g. crystals, flow if even an infinitesimal stress is applied. However, they do so in a way inherently different from ordinary liquids since their viscosity diverges for vanishing shear stress with an essential singularity. We find an ultra-slow decrease of the shear stress as a function of the shear rate, which explains the apparent yield stress identified in rheological flow curves. Furthermore, we suggest that an alternating shear of frequency omega and amplitude gamma should lead to a dynamic phase transition line in the (omega,gamma) plane, from a 'flowing' to a 'non-flowing' phase. Finally, we apply our results to crystals, show the corresponding microscopic process leading to flow and discuss possible experimental investigations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available