4.6 Article

Form factors in equilibrium and non-equilibrium mixed states of the Ising model

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1742-5468/2014/09/P09021

Keywords

correlation functions; form factors; quantum transport in one dimension; quantum quenches

Funding

  1. Simons Center for Geometry and Physics

Ask authors/readers for more resources

Using the 'Liouville space' (the space of operators) of the massive Ising model of quantum field theory, there is a natural definition of form factors in any mixed state. These generalize the usual form factors, and are building blocks for mixed-state correlation functions. We study the cases of mixed states that are diagonal in the asymptotic particle basis, and obtain exact expressions for all mixed-state form factors of order and disorder fields. We use novel techniques based on deriving and solving a system of non-linear functional differential equations. We then write down the full form factor expansion for mixed-state correlation functions of these fields. Under weak analytic conditions on the eigenvalues of the density matrix, this is an exact large-distance expansion. The form factors agree with the known finite-temperature form factors when the mixed state is specialized to a thermal Gibbs ensemble. Our results can be used to analyze correlation functions in generalized Gibbs ensembles (which occur after quantum quenches). Applying this to the density matrix for non-equilibrium steady states with energy flows, we observe that non-equilibrium form factors have branch cuts in rapidity space. We verify that this is in agreement with a non-equilibrium generalization of the KMS relations, and we conjecture that the leading large-distance behavior of order and disorder non-equilibrium correlation functions contains oscillations in the log of the distance between the fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available