4.8 Article

Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots

Journal

PLANT JOURNAL
Volume 84, Issue 2, Pages 323-334

Publisher

WILEY
DOI: 10.1111/tpj.12996

Keywords

zinc deficiency; bZIP transcription factor; ZIP family transporter; Arabidopsis thaliana; quantitative proteomics; quantitative real-time PCR

Categories

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [26450080]
  2. Nara Institute of Science and Technology - Ministry of Education, Culture, Sports, Science and Technology, Japan
  3. Japan Advanced Plant Science Network
  4. Grants-in-Aid for Scientific Research [26450080] Funding Source: KAKEN

Ask authors/readers for more resources

Zinc (Zn) depletion adversely affects plant growth. To avoid lethal depletion of cellular Zn, plants have evolved mechanisms to adjust the expression of genes associated with Zn homeostasis, the details of which are poorly understood. In the present study, we isolated an Arabidopsis thaliana T-DNA insertion mutant that exhibited hypersensitivity to Zn depletion. By monitoring root development under Zn-deficient conditions, we isolated a single mutant lacking the basic-region leucine-zipper transcription factor gene bZIP19. To identify proteins whose expression is affected by bZIP19, an iTRAQ-based quantitative proteomics analysis was performed using microsomal proteins from wild-type and the bzip19 mutant A.thaliana roots grown on Basal and Zn-deficient media. Of the 797 proteins identified, expression of two members of the Zrt- and Irt-related protein family, ZIP3 and ZIP9, and three defensin-like family proteins was markedly induced in wild-type but not in the bzip19 mutant under Zn-deficient conditions. Furthermore, selected reaction monitoring and quantitative real-time PCR revealed that ZIP9 expression is mediated by bZIP19 and may be partly supported by bZIP23, a homolog of bZIP19. Mutant analysis revealed that ZIP9 is involved in uptake of Zn by the roots, and the mutant lacking ZIP9 was significantly more sensitive to Zn depletion than the wild-type. These results demonstrate that bZIP19 mainly contributes to expression of genes, such as ZIP9, under Zn-deficient conditions. Significance Statement Zinc homeostasis is important for plant growth, but how plants cope with zinc deficiencies is poorly understood. We show that the Arabidopsis transcription factor bZIP19 predominantly contributes zinc deficiency adaptation, in part by affecting expression of the Zrt- and Irt-related protein 9 (ZIP9) Zn transporters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available