4.7 Article

Hydroelastic vibration of circular plates immersed in a liquid-filled container with free surface

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 332, Issue 12, Pages 3064-3085

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2013.01.007

Keywords

-

Ask authors/readers for more resources

In the present study, a theoretical method is developed to investigate free vibrations of circular plates immersed in fluids and a series of experimental tests are presented to validate the model. The coupled governing equations of both hydroelastic vibration of the plate and liquid sloshing are solved by a semi-analytical procedure, simultaneously. The effect of the plate, used as a baffle, on suppression free surface waves is also considered. Plates with two different boundary conditions, free-edge and clamped edge, are studied. The fluid domain is non-convex because of the presence of the plate, which introduces a singularity in the formulation of the fluid velocity potential. Both the least square and Galerkin methods are applied to determine the unknown coefficients in the velocity potential. Natural frequencies and mode shapes are obtained using the Rayleigh-Ritz method, taking fluid-structure interaction into account. The present approach is validated by comparison to results of modal test on two different steel plates with the free edge and submerged in water, as well as comparison to those of a commercial finite element code. The results obtained from the present method agree with those obtained from modal test and the finite element analysis. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available