4.7 Article

The interpolation damage detection method for frames under seismic excitation

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 330, Issue 22, Pages 5474-5489

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2011.06.012

Keywords

-

Ask authors/readers for more resources

In this paper a new procedure, addressed as Interpolation Damage Detecting Method (IDDM), is investigated as a possible mean for early detection and location of light damage in a structure struck by an earthquake. Damage is defined in terms of the accuracy of a spline function in interpolating the operational mode shapes (ODS) of the structure. At a certain location a decrease (statistically meaningful) of accuracy, with respect to a reference configuration, points out a localized variation of the operational shapes thus revealing the existence of damage. In this paper, the proposed method is applied to a numerical model of a multistory frame, simulating a damaged condition through a reduction of the story stiffness. Several damage scenarios have been considered and the results indicate the effectiveness of the method to assess and localize damage for the case of concentrated damage and for low to medium levels of noise in the recorded signals. The main advantage of the proposed algorithm is that it does not require a numerical model of the structure as well as an intense data postprocessing or user interaction. The ODS are calculated from Frequency Response Functions hence responses recorded on the structure can be directly used without the need of modal identification. Furthermore, the local character of the feature chosen to detect damage makes the IDDM less sensitive to noise and to environmental changes with respect to other damage detection methods. For these reasons the IDDM appears as a valid option for automated post-earthquake damage assessment, able to provide after an earthquake, reliable information about the location of damage. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available