4.7 Article

Quasi-active suspension design using magnetorheological dampers

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 330, Issue 10, Pages 2201-2219

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2010.11.029

Keywords

-

Funding

  1. EPSRC
  2. EPSRC DTA

Ask authors/readers for more resources

Quasi-active damping is a method of coupled mechanical and control system design using multiple semi-active dampers. By designing the systems such that the desired control force may always be achieved using a combination of the dampers, quasi-active damping seeks to approach levels of vibration isolation achievable through active damping, whilst retaining the desirable attributes of semi-active systems. In this article a design is proposed for a quasi-active, base-isolating suspension system. Control laws are firstly defined in a generalised form, where semi-active dampers are considered as idealised variable viscous dampers. This system is used to demonstrate in detail the principles of quasi-active damping, in particular the necessary interaction between mechanical and control systems. It is shown how such a system can produce a tunable, quasi-active region in the frequency response of very low displacement transmissibility. Quasi-active control laws are then proposed which are specific for use with magnetorheological dampers. These are validated in simulation using a realistic model of the damper dynamics, again producing a quasi-active region in the frequency response. Finally, the robustness of the magnetorheological, quasi-active suspension system is demonstrated. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available