4.7 Article

Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances

Journal

JOURNAL OF SOUND AND VIBRATION
Volume 309, Issue 3-5, Pages 375-406

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2007.05.023

Keywords

-

Ask authors/readers for more resources

Nonlinear dynamics of a hinged-hinged pipe conveying pulsatile fluid subjected to combination and principal parametric resonance in the presence of internal resonance is investigated. The system has geometric cubic nonlinearity due to stretching effect out of immovable support conditions at both ends. The pipe conveys fluid at a velocity with a harmonically varying component over a constant mean velocity. For appropriate choice of system parameters, the natural frequency of the second mode is approximately three times that of the first mode for a range of mean flow velocity, activating a three-to-one internal resonance. The analysis is carried out using the method of multiple scales by directly attacking the governing nonlinear integro-partial-differential equations and the associated boundary conditions. The set of first-order ordinary differential equations governing the modulation of amplitude and phase is analyzed numerically for combination parametric resonance and principal parametric resonance. Stability, bifurcation and response behavior of the pipe are investigated. The amplitude and frequency detuning of the harmonic velocity perturbation are taken as the control parameters. The system exhibits response in the directly excited and indirectly excited modes due to modal interaction. Dynamic response of the system is presented in the form of phase plane trajectories, Poincare maps and time histories. A wide array of dynamical behavior is observed illustrating the influence of internal resonance. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available