4.6 Article

Structural and magnetic characterization of La0.8Sr0.2MnO3 nanoparticles prepared via a facile microwave-assisted method

Journal

JOURNAL OF SOLID STATE CHEMISTRY
Volume 215, Issue -, Pages 1-7

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jssc.2014.03.011

Keywords

Manganites; Nanoparticles; Microwave-assisted; Spin glass; Super-paramagnetism

Ask authors/readers for more resources

Nanoparticles of La0.8Sr0.2MnO3 (LSMO) with different particle sizes are synthesized by a very fast, inexpensive, reproducible, and environmentally friendly method: the microwave irradiation of the corresponding mixture of nitrates. The structural and magnetic properties of the samples are investigated by the X-Ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and magnetic (DC magnetization and AC susceptibility) measurements. The XRD study coupled with the Rietveld refinement show that all samples crystallize in a rhombohedral structure with the space group of R-3C. The FT-IR spectroscopy and FE-SEM images indicate formation of the perovskite structure of LSMO. The DC magnetization measurements confirm the decrease in the particle size effects on the magnetic properties, e.g. reduction in the ferromagnetic (FM) moment and increase in the surface spin disorder. Magnetic dynamics of the samples studied by AC magnetic susceptibility shows that the magnetic behavior of the nanometer-sized samples is well-described by the Vogel-Fulcher and critical slowing down laws. Strong interaction between magnetic nanoparticles of LSMO was detected by fitting the experimental data with the mentioned models. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available