4.7 Review

Biophysical impacts of climate-smart agriculture in the Midwest United States

Journal

PLANT CELL AND ENVIRONMENT
Volume 38, Issue 9, Pages 1913-1930

Publisher

WILEY
DOI: 10.1111/pce.12485

Keywords

CO2; heat; transpiration

Categories

Funding

  1. Energy Biosciences Institute, University of Illinois at Urbana-Champaign

Ask authors/readers for more resources

The potential impacts of climate change in the Midwest United States present unprecedented challenges to regional agriculture. In response to these challenges, a variety of climate-smart agricultural methodologies have been proposed to retain or improve crop yields, reduce agricultural greenhouse gas emissions, retain soil quality and increase climate resilience of agricultural systems. One component that is commonly neglected when assessing the environmental impacts of climate-smart agriculture is the biophysical impacts, where changes in ecosystem fluxes and storage of moisture and energy lead to perturbations in local climate and water availability. Using a combination of observational data and an agroecosystem model, a series of climate-smart agricultural scenarios were assessed to determine the biophysical impacts these techniques have in the Midwest United States. The first scenario extended the growing season for existing crops using future temperature and CO2 concentrations. The second scenario examined the biophysical impacts of no-till agriculture and the impacts of annually retaining crop debris. Finally, the third scenario evaluated the potential impacts that the adoption of perennial cultivars had on biophysical quantities. Each of these scenarios was found to have significant biophysical impacts. However, the timing and magnitude of the biophysical impacts differed between scenarios. This study assessed the biophysical impacts of several climate-smart agricultural practices in the Midwest United States. Specifically we investigated the biophysical impacts of adapting crops to extended growing season length, expanding no-till agriculture, and the adoption of perennial cultivars. We found that each of these practices had significant biophysical impacts, but the seasonality and extent of the impacts differed between scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available