4.8 Article

Streamlined Construction of the Cyanobacterial CO2-Fixing Organelle via Protein Domain Fusions for Use in Plant Synthetic Biology

Journal

PLANT CELL
Volume 27, Issue 9, Pages 2637-2644

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1105/tpc.15.00329

Keywords

-

Funding

  1. National Science Foundation [EF1105897]
  2. Office of Basic Energy Sciences, U.S. Department of Energy [DE-FG02-91ER20021]
  3. Emerging Frontiers
  4. Direct For Biological Sciences [1105897] Funding Source: National Science Foundation

Ask authors/readers for more resources

Bacterial microcompartments (BMCs) are self-assembling organelles that sequester segments of biochemical pathways within a protein shell. Given their functional diversity, BMCs constitute a rich source of metabolic modules for applications in synthetic biology. The carboxysome, the cyanobacterial BMC for CO2 fixation, has attracted significant attention as a target for installation into chloroplasts and serves as the foundation for introducing other types of BMCs into plants. Carboxysome assembly involves a series of protein-protein interactions among at least six gene products to form a metabolic core, around which the shell assembles. This complexity creates significant challenges for the transfer, regulation, and assembly of carboxysomes, or any of the myriad of functionally distinct BMCs, into heterologous systems. To overcome this bottleneck, we constructed a chimeric protein in the cyanobacterium Synechococcus elongatus that structurally and functionally replaces four gene products required for carboxysome formation. The protein was designed based on protein domain interactions in the carboxysome core. The resulting streamlined carboxysomes support photosynthesis. This strategy obviates the need to regulate multiple genes and decreases the genetic load required for carboxysome assembly in heterologous systems. More broadly, the reengineered carboxysomes represent a proof of concept for a domain fusion approach to building multifunctional enzymatic cores that should be generally applicable to the engineering of BMCs for new functions and cellular contexts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available