4.6 Article

Defining soil geochemical baselines at small scales using geochemical common factors and soil organic matter as normalizers

Journal

JOURNAL OF SOILS AND SEDIMENTS
Volume 11, Issue 1, Pages 3-14

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11368-010-0269-4

Keywords

Complex geologic setting; Factor analysis; Geochemical baseline; Heavy metals; Natural variation; Normalization procedures

Funding

  1. Natural Science Foundation of China [40601039]
  2. Natural Science Foundation of Jiangsu Province [BK2009340]
  3. Chinese Academy of Sciences [KZCX2-YW-409]

Ask authors/readers for more resources

Purpose The establishment of geochemical baselines is essential for accurate evaluation of the present state of surface environments. In this study, normalization procedures (NP), which can improve the explanation of the natural variation of elements, were conducted using geochemical common factors (GCF) and soil organic matter (SOM) as normalizers to define the geochemical baselines of soil trace elements. Materials and methods Soil samples (n=345) were collected in Luhe County, Jiangsu, China, a county with a complex geologic setting and intensive anthropogenic influence. Conservative elements, Al, Ca, Fe, K, Mg, Mn, Na, P, and Ti; trace elements, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn; and SOM were measured. Normalization procedures were conducted using multiple linear regressions between soil trace elements and SOM and GCFs, acquired from factor analysis of the soil major elements. Normalization procedures using univariate linear regressions between soil trace elements and conservative elements Al, Fe, and Ti were also conducted for comparison. Results and discussion Comparison of NPs using GCFs and SOM as normalizers with NPs, which use single conservative elements as normalizers, shows that the former is more accurate than the latter for As, Pb, and Zn and is as accurate for Cd, Cr, Cu, Hg, and Ni, when the most appropriate single conservative element is chosen. Small-scale geochemical baselines in the county are significantly different from regional-scale geochemical baselines for Jiangsu Province, China. Conclusions The application of regional-scale geochemical baselines at small scales may lead to estimation errors in determining anomalies and assessing environments. Baselines obtained from the NPs using GCFs and SOM as normalizers are more accurate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available