4.6 Article

Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis

Journal

JOURNAL OF SOILS AND SEDIMENTS
Volume 9, Issue 6, Pages 547-554

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11368-009-0120-y

Keywords

Bacterial diversity; Belowground ecosystem; Boosted tree analysis; Ecosystem multifunctionality; Microorganisms; Soils

Funding

  1. Chinese Academy of Sciences [KZCX2-YW-408, KZCX1-YW-0603]
  2. Natural Science Foundation of China [40871129]
  3. Australian Research Council

Ask authors/readers for more resources

There is increasing evidence of linkages between biodiversity and ecosystem functions. Recent interests on this topic have expanded from an individual-function perspective to a multifunction perspective. This study aims to explore the soil bacterial diversity-multifunctionality relationship. Soil bacterial diversity was determined using culture-independent molecular techniques. Bacterial taxa groups with positive effects on certain ecosystem functions were identified by aggregated boosted tree analysis with a prediction-error-based backward-elimination criterion. Soil bacterial diversity-multifunctionality relationship was examined by exploring the relationship between the number of ecosystem functions and the number of soil bacterial taxa. More ecosystem functions would require greater numbers of bacterial taxa, which can be explained potentially using the multifunctional complementarity mechanism. Furthermore, a power law equation, OTU (N) = OTU1(N) (T) , was firstly proposed to describe the observed positive relationship between the soil bacterial diversity and the ecosystem multifunctionality, where OTU (N) is the number of operational taxonomic units (OTUs) required by N functions, while OTU1 is the average number of species required for one function, and T is the average turnover rate of OTU across functions. The number of ecosystem functions would decrease with the loss of soil bacterial diversity. This biodiversity-multifunctionality relationship has an important implication for comprehensively understanding the risk of bacterial diversity loss in relation to the ecosystem functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available