4.7 Review

The Regulatory Status of Genome-edited Crops

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 14, Issue 2, Pages 510-518

Publisher

WILEY
DOI: 10.1111/pbi.12444

Keywords

engineered nucleases; site-specific mutagenesis; site-directed nucleases; homology-directed repair; CRISPR; Cas9; TALEN

Funding

  1. Iowa State University Crop Bioengineering Consortium

Ask authors/readers for more resources

Genome editing with engineered nucleases (GEEN) represents a highly specific and efficient tool for crop improvement with the potential to rapidly generate useful novel phenotypes/traits. Genome editing techniques initiate specifically targeted double strand breaks facilitating DNA-repair pathways that lead to base additions or deletions by non-homologous end joining as well as targeted gene replacements or transgene insertions involving homology-directed repair mechanisms. Many of these techniques and the ancillary processes they employ generate phenotypic variation that is indistinguishable from that obtained through natural means or conventional mutagenesis; and therefore, they do not readily fit current definitions of genetically engineered or genetically modified used within most regulatory regimes. Addressing ambiguities regarding the regulatory status of genome editing techniques is critical to their application for development of economically useful crop traits. Continued regulatory focus on the process used, rather than the nature of the novel phenotype developed, results in confusion on the part of regulators, product developers, and the public alike and creates uncertainty as of the use of genome engineering tools for crop improvement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available