4.5 Article

Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid-liquid microextraction followed by GC-FID and GC-MS determinations

Journal

JOURNAL OF SEPARATION SCIENCE
Volume 34, Issue 11, Pages 1309-1316

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jssc.201000928

Keywords

Dispersive liquid-liquid microextraction; Gas chromatography; Milk samples; Triazole pesticides

Ask authors/readers for more resources

A simple and rapid dispersive liquid-liquid microextraction (DLLME) technique coupled with gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) was developed for the extraction, preconcentration, and analysis of triazole pesticides (penconazole, hexaconazole, tebuconazole, triticonazole, and difenoconazole) in cow milk samples. Initially to 5 mL milk sample, NaCl and acetonitrile were added as salting-out agent and extraction solvent, respectively. After manual shaking, the mixture was centrifuged. In the presence of sodium chloride, a two-phase system was formed: upper phase, acetonitrile containing triazole pesticides and lower phase, aqueous phase containing soluble compounds and the precipitated proteins. After the extraction of pesticides from milk, a portion of supernatant phase (acetonitrile) was removed, mixed with chloroform at microliter level and rapidly injected by syringe into 5 mL distilled water. In this process, triazole pesticides were extracted into fine droplets of chloroform (as extraction solvent). After centrifugation, the fine droplets of chloroform were sedimented in bottom of the conical test tube. Finally, GC-FID and GC-MS were used for the separation and determination of analytes in the sedimented phase. Some important parameters like type of solvent for extraction of pesticides from milk, salt amount, the volume of extraction solvent, etc., which affect the extraction efficiency, were completely studied. Under the optimum conditions, enrichment factors were in the range of 156-380. The linear ranges of calibration curves were wide and limits of detection (LODs) and limits of quantification (LOQs) were between 4-58 and 13-180 mu g/L, respectively. This method is very simple and rapid, requiring < 15 min for sample preparation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available