4.7 Article

Understanding Circadian Regulation of Carbohydrate Metabolism in Arabidopsis Using Mathematical Models

Journal

PLANT AND CELL PHYSIOLOGY
Volume 56, Issue 4, Pages 586-593

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcv033

Keywords

Carbon starvation; Circadian clocks; Growth; Mathematical model; Photoperiod; Sucrose homeostasis

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology, Japan [22119009]
  2. Japan Society for the Promotion of Science
  3. Grants-in-Aid for Scientific Research [22119011] Funding Source: KAKEN

Ask authors/readers for more resources

C-3 plants assimilate carbon by photosynthesis only during the day, but carbon resources are also required for growth and maintenance at night. To avoid carbon starvation, many plants store a part of photosynthetic carbon in starch during the day, and degrade it to supply sugars for growth at night. In Arabidopsis, starch accumulation in the day and degradation at night occur almost linearly, with the shape of this diel starch profile adaptively changing to allow continuous supply of sugar even in long-night conditions. The anticipation of dawn required to ensure linear consumption of starch to almost zero at dawn presumably requires the circadian clock. We review the links between carbon metabolism and the circadian clock, and mathematical models aimed at explaining the diel starch profile. These models can be considered in two classes, those that assume the level of available starch is sensed and the system ensures linearity of starch availability, and those in which sugar sensing is assumed, yielding linearity of starch availability as an emergent property of sucrose homeostasis. In the second class of model the feedback from starch metabolism to the circadian clock is considered to be essential for adaptive response to diverse photoperiods, consistent with recent empirical data demonstrating entrainment of the circadian clock by photosynthesis. Knowledge concerning the mechanisms regulating the dynamics of starch metabolism and sugar homeostasis in plants is required to develop new theories about the limitations of growth and biomass accumulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available