4.3 Article

Plasmonic Au nanoparticles on 8 nm TiO2 nanotubes for enhanced photocatalytic water splitting

Journal

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4821177

Keywords

-

Ask authors/readers for more resources

We report here for the first time a successful distribution and attachment of fine Au nanoparticles on similar to 8 nm diameter TiO2 nanotubes having significantly increased surface area. Au thin film deposition onto hydrothermally grown TiO2 nanotube arrays followed by thermal annealing breaks up the Au film into desired, uniformly distributed nanoparticles. Visible light absorption spectra of the gold nanoparticles on TiO2 nanotubes indicate that the Au nanoparticles are photo-excited due to plasmon resonance, and charge separation is accomplished by the transfer of photoexcited electrons from the gold particle to the TiO2 conduction band, thereby enhancing photoelectrochemical performance. By virtue of substantially increased surface area with the 8 nm TiO2 nanotube substrate in combination with the plasmonic effect of distributed Au nanoparticles, significantly increased photocurrent density was obtained with extended light absorbance from the UV regime to the visible spectrum region. Such gold nanoparticle decorated, fine TiO2 nanostructures fabricated by a simple and versatile method can be useful for hydrogen generation by water splitting, CO oxidation and various other types of photocatalysts and photovoltaic fuel cells. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available