4.5 Article

Thermoplastic pultrusion process: Modeling and optimal conditions for fibers impregnation

Journal

JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
Volume 32, Issue 17, Pages 1285-1294

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0731684413489851

Keywords

Pultrusion modeling; simplified model; axisymmetric die; optimisation

Funding

  1. Airbus France

Ask authors/readers for more resources

Pultrusion is a crucial method for continuous production of fiber-reinforced composites. It was developed several years ago for thermosetting polymer matrices, but the challenge is now to extend it to thermoplastic matrices, with a much higher viscosity. In this paper, we propose an analysis of the parameters influencing fiber impregnation in the conditions of this process. A semi-analytical one-dimensional axisymmetric model based on Darcy's law and Stokes equations is developed to predict the impregnation profile inside the fibrous phase in the case of a natural impregnation governed by capillary forces. Thanks to a dimensional analysis, it enables to quantify the influence of all the material and testing parameters under the assumption of a slow variation of the geometry of the impregnation die. The cases of a straight and conical dies are discussed. For the first case, an exhaustive numerical study enables to define the optimal processing conditions for a perfect impregnation. Those results are shown to be useful tools for finding an optimal pulling velocity and die length for a given fluid/fibers pair. For the second case, we show that section reductions do not improve impregnation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available