4.5 Review

A review of multiscale composite manufacturing and challenges

Journal

JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
Volume 31, Issue 24, Pages 1687-1711

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0731684412456612

Keywords

Multiscale; nanomaterial; carbon nanotubes; manufacturing; fiber reinforced composites

Ask authors/readers for more resources

As the utilization of advanced composites in structural applications grows, the need for improving their through-thickness properties becomes imperative. Although the behavior of composite laminates under structural and thermal loads has received much attention with their growth in safety critical structures, more effort needs to go into selectively improving their electrical and thermal conductivities. Additionally, the ability to manufacture composite structures that can inherently monitor their own health will be exceedingly beneficial. This paper provides an overview of advances made towards multiscale composite manufacturing. Multiscale composites, especially with the use of carbon nanotubes, have been sought to provide enhanced structural (through-thickness) properties and increased electrical and thermal conductivities. This report will review the state of art in the manufacturing of multiscale composites, their scalability, and their inherent potential for multifunctionality. Current techniques mostly result in the application of carbon nanotubes throughout the entire laminates, rather than in selected areas. Subsequently, one of the main barriers, to the widespread use of carbon nanotube-applied composites, is an efficient mass-producible manufacturing process. This paper attempts to highlight the current knowledge gaps in this critical area of composites manufacturing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available